
12: GCPS Live Bus Monitoring System

CS 4850 - Section 01 – Fall 2024

Aug 27, 2024

Sam Bostian (Team Leader)

Michael Rizig (Developer)

Charlie McLarty

(Developer)

Allen Roman

(Developer)

Brian Pruitt

(Documentation)

Team Members:

Name Role Cell Phone / Alt Email

Sam Bostian (Team

Lead)
Developer

321.292.4693

sbostian@students.kennesaw.

edu

Michael Rizig Developer 678.668.3294

mrizig@students.kennesaw.edu

Charlie McLarty Developer/QA 470.303.9544

cmclarty21@gmail.com

Brian Pruitt Documentation 404.207.6548

bpruitt9@students.kennesaw.edu

Allen Roman Developer 470.249.0421

 Page 1 of 10

aroman14@students.kennesa

w.edu

Software Design Document

GCPS Live Bus Monitoring System

Version 0.1

August 31, 2024
Software Development Team:

Sam Bostian, Charlie McLarty, Brian Pruitt, Michael Rizig
Supervisors: Ed Van Ness and Sharon Perry

Gwinnett County Public Schools
Kennesaw State University

 Page 2 of 10

Revisions

Version Primary Author
Description of

Version
Changes

Date
Completed

0.1

Sam Bostian,
Charlie McLarty,

Brian Pruitt,
Michael Rizig

Initial Release

 Page 3 of 10

Table of Contents

Revisions .. 2

1. Introduction and Overview .. 4

1.1 Purpose ... 4

1.2 Introduction .. 4

1.3 System Overview .. 4

1.4 Definitions, Acronyms and Abbreviations ... 5

2. Design Considerations .. 5

2.1 Assumptions ... 5

2.2 Dependencies .. 5

2.2.1 Kafka [1] .. 5

2.2.2 Microsoft SQL Server ... 6

2.2.3 Podman Container ... 6

2.1. General Constraints .. 6

2.2. Development Methods .. 7

3. Architectural Strategies .. 7

4. System Architecture ... 8

4.1 High-Level Architecture Overview .. 8

4.2 Partitioning of Responsibilities .. 9

4.3 Interaction Between Components ... 9

5. Detailed System Design ... 10

5.1. Classification .. 10

5.2. Definition .. 10

5.3. Constraints .. 10

5.4. Resources .. 10

5.5. Interface/Exports .. 10

6. Bibliography ... 10

 Page 4 of 10

1. Introduction and Overview

1.1 Purpose

This document describes the design and implementation of the software solution for
Gwinnett County Public School’s issue with using polling to gather bus data. A
detailed description for how to set up an Apache Kafka consumer, the python
solution used to handle and process data, the relationship database management,
containerization of the solution and a system for monitoring and handling errors.

1.2 Introduction

This project aims to enhance the efficiency and safety of school bus

operations for Gwinnett County Public Schools (GCPS) by transitioning

from the current Samsara REST API polling method to a Kafka-based

event streaming solution. Currently, GCPS uses Samsara REST APIs to poll

data on school buses, including locations, speeds, and vehicle health,

every 5 seconds. However, this method introduces latency, potential

bottlenecks and a large consumption of API calls. Due to Gwinnett

Counties’ large fleet, of approximately 2000 buses, they are currently in

the top 1% of Samsara’s REST API usage. The current polling system

contributes to a 15 second delay from when the event takes place.

1.3 System Overview

To address these issues, this project involves developing a stand-alone

application on a Linux, using Red Hat Enterprise Linux distribution, a

subscriber will consume events made from the Samsara Kafka Connector.

The application will process real time events, perform data validation, and

sort valid and invalid records into their own separate relationship SQL

server database, where they can be accessed by various applications.

Additionally, the solution will be containerized using Podman for consistent

deployment, with optional monitoring functionality to track performance

and manage backlogs. To test the applications’ capabilities simulated real-

time data will be streamed to simulate the load of GCPS.

 Page 5 of 10

1.4 Definitions, Acronyms and Abbreviations

Acronym Meaning
API Application Programming Interface

GCPS Gwinnett County Public Schools

JSON JavaScript Object Notation

KRaft Apache Kafka Raft

Podman Pod Manager

REST Representational State Transfer

RHEL Red Hat Enterprise Linux

SQL Structured Query Language

WSL Windows Subsystem for Linux

2. Design Considerations

2.1 Assumptions

 Date
Identified

Assumption Validation
By:

Date
Completed

Valid Comments

1 9/1/31 2000 Buses

Streamed

Sam Bostian - ☐ -

2.2 Dependencies

2.2.1 Kafka [1]

• Kafka: 0.10.1.0 or later release

• Kafka Cluster:

[2]

• Operating System: WSL2 with a Linux OS or Any Linux OS

Serverless-like
Kafka

Kafka as a
Service

Self-managed
Kafka

Local Kafka

Upstash Apache
Kafka

Confluent
Cloud

Confluent
Platform

Test Containers

Amazon MSK
Serverless

Red Hat
Openshift
Streams

Red Hat AMQ
Streams
(Strimzi)

Quarkus Dev Services
(Red Panda)

 Heroku

Apache Kafka

Cloudera Data
Platform

EmbeddedKafkaCluster

 Page 6 of 10

• Java: Java 8 or 11 , Java Zookeeper or Kafka Raft

2.2.2 Microsoft SQL Server

• Operating System: Windows 10 TH1 1507 or Windows Server 2016 or

greater

• .NET Framework:

2.2.3 Podman Container

• Operating System: Windows, MacOS, or Linux

• Minimum Requirements:

2 physical CPU cores

2 GB of free memory

35 GB of storage space

Describe any assumptions or dependencies regarding the software and its use. These

may concern such issues as:

● Related software or hardware

● Operating systems

● End-user characteristics

● Possible and/or probable changes in functionality

2.1. General Constraints

Describe any global limitations or constraints that have a significant impact on the

design of the system's software (and describe the associated impact). Such constraints may be

imposed by any of the following (the list is not exhaustive):

● Hardware or software environment

● End-user environment

● Availability or volatility of resources

● Standards compliance

● Interoperability requirements

● Interface/protocol requirements

● Data repository and distribution requirements

● Security requirements (or other such regulations)

● Memory and other capacity limitations

● Performance requirements

● Network communications

● Verification and validation requirements (testing)

● Other means of addressing quality goals

● Other requirements described in the requirements specification

 Page 7 of 10

2.2. Development Methods

Briefly describe the method or approach used for this software design. If one or more

formal/published methods were adopted or adapted, then include a reference to a more

detailed description of these methods. If several methods were seriously considered, then each

such method should be mentioned, along with a brief explanation of why all or part of it was

used or not used.

3. Architectural Strategies

This section outlines the key design decisions and strategies that influence the overall

architecture of the system. Each decision is made with careful consideration of the project’s

goals, constraints, and future extensibility.

Programming Language:

• Python/C#: The system will use Python or C# for consuming data from Kafka and

processing it. These languages were chosen because of their robust support for

handling JSON data, extensive libraries for data manipulation, and ease of integration

with both Kafka and SQL Server.

• SQL Server: Chosen for its compatibility with the existing infrastructure at GCPS

and its strong support for handling large volumes of relational data. SQL Server’s

advanced features such as indexing, stored procedures, and analytics capabilities are

crucial for this project.

• Kafka: Kafka is used for its ability to handle large streams of data in real-time with

low latency. Kafka’s distributed architecture provides the scalability and fault

tolerance needed for this project.

Reasoning: The choice of Python/C# and SQL Server balances the need for ease of

development with the requirements for processing and storing large volumes of data. Kafka’s

event streaming capabilities align with the project’s goal of reducing latency in telemetry data

processing.

Alternatives Considered: Alternatives like using MySQL or PostgreSQL instead of SQL

Server were considered but rejected due to the existing reliance on Microsoft technologies at

GCPS.

Concurrency and Synchronization

Multi-threading: The system will use multi-threading to process multiple Kafka streams

concurrently, ensuring that data is processed in near real-time. GCPS is the largest school

system in Georgia with nearly 2000 busses being monitored concurrently.

Reasoning: Multi-threading allows the system to handle high volumes of data without

bottlenecks.

 Page 8 of 10

4. System Architecture

This section provides a high-level overview of the system architecture, explaining how the

system’s functionality is partitioned and how responsibilities are assigned to different

subsystems or components. The system is designed to handle the ingestion, processing, and

storage of telemetry data in a scalable and maintainable way.

4.1 High-Level Architecture Overview

The system architecture is designed around the following major components:

1. Kafka Event Streaming Subsystem

o Purpose: This subsystem is responsible for ingesting telemetry data from Samsara

via the Kafka event streaming platform.

o Components:

▪ Kafka Producer: Produces telemetry events from the Samsara system and

publishes them to a Kafka topic.

▪ Kafka Broker: Manages the Kafka topic and ensures that data is

distributed to consumers.

▪ Kafka Consumer: Consumes the telemetry events from the Kafka topic

for further processing.

2. Data Processing Subsystem

o Purpose: This subsystem processes the raw telemetry data received from Kafka,

including validation and transformation of the data.

o Components:

▪ Validation Module: Validates incoming data based on predefined rules

(e.g., ensuring GPS coordinates are within a valid range).

▪ Transformation Module: Transforms the data into a format suitable for

storage in the SQL Server database.

▪ Error Handling Module: Handles any errors encountered during data

processing, including logging and retry mechanisms.

3. Data Storage Subsystem

o Purpose: This subsystem is responsible for storing the processed telemetry data in

a relational database.

o Components:

▪ SQL Server Database: The primary data storage system, where validated

and transformed telemetry data is stored in a normalized format.

▪ Data Access Layer (DAL): Provides an interface for storing and retrieving

data from the SQL Server database.

4. Deployment and Containerization Subsystem

o Purpose: This subsystem ensures that the application can be consistently deployed

across various environments using containerization technology.

o Components:

▪ Docker/Podman Container: Encapsulates the entire application, including

all dependencies, to ensure consistent behavior across environments.

 Page 9 of 10

▪ CI/CD Pipeline: Manages the automated deployment of the containerized

application, ensuring that updates are deployed smoothly and reliably.

5. Monitoring and Logging Subsystem

o Purpose: This subsystem tracks the performance and health of the system,

providing insights into system operations and alerting administrators to potential

issues.

o Components:

▪ Logging Service: Captures logs from various components for auditing and

troubleshooting purposes.

▪ Monitoring Dashboard (Optional): Provides real-time visualization of

system metrics, such as event processing rates and error rates.

4.2 Partitioning of Responsibilities

The architecture divides responsibilities among these subsystems to achieve modularity,

scalability, and maintainability:

• Kafka Event Streaming Subsystem: This subsystem handles the ingestion of

telemetry data, which is crucial for ensuring that data is captured in near real-time with

minimal latency.

• Data Processing Subsystem: By isolating data validation and transformation into its

own subsystem, the architecture ensures that these operations can be easily updated or

replaced without affecting other parts of the system.

• Data Storage Subsystem: The separation of data storage into its own subsystem

allows for flexibility in database management and scalability, ensuring that the system

can handle increasing volumes of data.

• Deployment and Containerization Subsystem: This subsystem ensures that the

application can be deployed reliably and consistently across different environments,

which is essential for maintaining system integrity.

• Monitoring and Logging Subsystem: This subsystem provides ongoing visibility

into system operations, allowing administrators to quickly identify and address any

issues that arise.

4.3 Interaction Between Components

• Data Flow: Telemetry data flows from the Kafka Event Streaming Subsystem to the

Data Processing Subsystem, where it is validated and transformed. Valid data is then

passed to the Data Storage Subsystem for storage in the SQL Server database.

• Error Handling: Errors encountered during data processing are logged by the Error

Handling Module, and depending on the nature of the error, the data may be retried or

logged as invalid.

• Deployment: The entire system is encapsulated within a Docker/Podman container,

which is managed by the CI/CD pipeline for consistent deployment across different

environments.

• Monitoring: The Logging Service captures logs from all subsystems, which are then

visualized in the Monitoring Dashboard to provide real-time insights into system

performance.

 Page 10 of 10

5. Detailed System Design

Most components described in the System Architecture section will require a more

detailed discussion. Other lower-level components and subcomponents may need to be

described as well. Each subsection of this section will refer to or contain a detailed description

of a system software component. The discussion provided should cover the following

software component attributes:

5.1. Classification

 The kind of component, such as a subsystem, module, class, package, function, file,

etc.

5.2. Definition

 The specific purpose and semantic meaning of the component. This may need to

refer to the requirements specification.

5.3. Constraints

 Any relevant assumptions, limitations, or constraints for this component. This

should include constraints on timing, storage, or component state, and might include rules for

interacting with this component (encompassing preconditions, postconditions, invariants,

other constraints on input or output values and local or global values, data formats and data

access, synchronization, exceptions, etc.)

5.4. Resources

 A description of any and all resources that are managed, affected, or needed by this

entity. Resources are entities external to the design such as memory, processors, printers,

databases, or a software library. This should include a discussion of any possible race

conditions and/or deadlock situations, and how they might be resolved.

5.5. Interface/Exports

 The set of services (resources, data, types, constants, subroutines, and exceptions)

that are provided by this component. The precise definition or declaration of each such

element should be present, along with comments or annotations describing the meanings of

values, parameters, etc. For each service element described, include (or provide a

reference) in its discussion a description of its important software component attributes

(Classification, Definition, Responsibilities, Constraints, Composition, Uses, Resources,

Processing, and Interface).

6. Bibliography

[1] https://kafka.apache.org/documentation/#design

[2] https://developers.samsara.com/docs/data-connectors

https://kafka.apache.org/documentation/#design
https://developers.samsara.com/docs/data-connectors

