BERT Sentiment Analysis

CS 4742

Natural Language Processing

Fall 2024

Instructor — Dr. Michail Alexiou

Michael Rizig, Sam Bostian, Colton Baldwin

I. Methodology

One of the major tasks in the Natural Language Processing field is sentiment analysis and
one of the models for this task is the BERT (Bidirectional Encoder Representation for
Transformers) model. The key to a BERT model’s effectiveness at sentiment analysis lies in its
bidirectional architecture that allows the model to analyze the context of a word from both sides
of a sentence. Before 2018 traditional NLP models analyzed the context of a word from one side
of the sentence.

For this project we used a pretrained BERT-base model and fine tuned it on the preprocessed
reviews from Project 1: Logistic Regression Sentiment Analysis. The same preprocessed data
was used so the results between a simple model like logistic regression can be compared to the
results of a modern complex model like BERT. The BERT-base model has twelve transformer
layers and 110 million parameters compared to BERT-large with twenty-four transformer layers
and 240 million parameters. The BERT-base was chosen because of hardware limitations and
the amount of time it would have taken to train such a large model.

/

- 24 Encoder

Add & Norm

4

Feed Forward Encoder

Encoder

@
m m
= =
8 : |8
Q. Q.
[} []
= =

Encoder 3 Encoder

Add & Norm
4 Encoder 4 | Encoder
Multi-Head
Attention

\ - BERTgase BERTLa,gy

0 0

1 Encoder

3\

@P Mask LM Mask LM \ /@ ER@‘D Star/End Spéh
«~ =

) o= G
A M. RN &
BERT wfs & & 8 & &« s a oaa]= BERT
[eealle] (B][Ewnl[e] [&] (ol] [& [&en][e] [&]
LT LT Lr
m . | Tok N [SEP] m m m Tok 1 e Tok N | [SEF) Tok 1 TokM
Masked Sentence A * Masked Sentence B Question * Paragraph
\ Unlabeled Sentence A and B Pair / Question Answer Pair
Pre-training Fine-Tuning

To allow for small changes in the training process a small learning rate of 0.00002 was used.
Due to the complexity of the model, only fifty thousand reviews with ten thousand validation
reviews were used in training the model instead of the entire data set. The Adaptive Moment
Estimation (Adam) optimization technique is used to help speed up training. Adam has
consistently been shown to converge faster than other optimization algorithms. The model was
saved after the fine-tuning was finished, for testing the model's capabilities at sentiment analysis.

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)

learning_rate = 2Ze-5

number_of_epochs = 1

model = TFBertForSequenceClassification.from_pretrained('bert-b —-uncased')
optimizer = tf.keras.optimizers.Adam(learning _rate=learning_rate, epsilon=1e-88)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

metric = tf.keras.metrics.SparseCategoricalAccuracy('ac ")

print("Compiling model..")

model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

print("Encoding Training Dataset..")
ds_train_encoded = encode_examples(ds_train[:580888]).shuffle(186868).batch(batch_size)

print("Encoding Testing Dataset.. ")
ds_test_encoded = encode_examples(ds_test[:1808@]).batch(batch_size)

print("Training model..")
bert_history = model.fit(ds_train_encoded, epochs=number_of_epochs, validation_data=ds_test_encoded)
print("Training Complete. \nSaving...")

model.save_pretrained("trained")

Figure 1a: Bert Model initialization and training (train_bert.py)

A second script was written for the testing of the model. This script ran a predetermined
number of labeled reviews through the model and stored the number of true positives, true
negatives, false positives and false negatives. These numbers were then used to calculate the
performance metrics for the finetuned BERT model. These metrics were used to determine the
efficiency of the model and compare it to the logistic models created in Project 1.

runtest(data):
fp=0
tn=0
tp=0
tn=0
correct=0
for line in data:
input = tokenizer.encode(line[@], truncation= , padding= , return_tensors="tf")
output = model.predict(input)[8]
prediction = tf.nn.softmax(output, axis=1)
label = tf.argmax(prediction, axis=1)
label = label.numpy()
if label[@] == @:
if int(line[1]) ==8:
tn+=1
correct+=1
fn+=1
if int(line[1]) ==@:
fp+=1

correct+=1
tp+=1
return [correct,tp,tn,fp,fn]

Figure 1b: Testing Function (test bert.py)

II. Results

The results for testing were generally positive, with an average of around 85% accuracy
when trained on 50k reviews. Due to time and computing constraints, this was the maximum
number we could reasonably train the model on. Figure 2a highlights our results when testing the
model on 1k random reviews from our testing set.

Testing set (1000)
TARGET
Positive Negative SUM
OUTPUT
446 103 549
Positive 44.60% 10.30% 81.24%
18.76%
50 401 451
Negative 5.00% 40.10% 88.91%
11.09%
496 504 847 /1000
SUM
89.92% 79.56% 84.70%
10.08% 20.44% 15.30%

Figure 2a: Confusion matrix for finetuned BERT model (1k samples)

We can see from this confusion matrix that the model performs relatively well, with
positive reviews being generally easier for the model to pick up than negative reviews. This
discrepancy can be explained by many reasons such as sarcasm or generally neutral reviews
skewing the models’ learning. While this is a generally positive result, 1.000 is a relatively small
set to run our test on. To ensure that our model will perform as such consistently, we need to test
with more data points. The tradeoff for this is the time for testing increases as we increase our
total test set.

Testing set (10k)
TARGET
Positive Negative SUM
OUTPUT

4441 847 5288
Positive 44.41% 8.47% 83.98%
16.02%

554 4158 4712
Negative 5.54% 41.58% 88.24%
11.76%

sum 4995 5005 8599 / 10000

88.91% 83.08% 85.99%

11.09% 16.92% 14.01%

Figure 2b: Confusion matrix for finetuned BERT model (10k samples)

We can see from the confusion matrix in Figure 2b that despite increasing our number of
random testing reviews, our accuracy does not change by any significant amount (approx 1%).

This larger test is to validate that our smaller testing set was not a ‘lucky run’ and that the model
is consistent with novel random reviews.

0.8123861566484 0.8991935483870 0.8535885167464
1,000 0.847
517 968 . 115
0.8396260211800 0.8890890890890 0.8637557133132
10,000 0.8599
302 891 355

Figure 2c: Performance Metrics for finetuned BERT model

When breaking down performance metrics, we have 5 key values to keep in mind.
Accuracy (TP+TN / ALL) , Precision (TP / TP + FP), Recall (TP /TP + FN), and F1 score ((2 *
precision * recall) / (precision + recall)). Figure 2c shows these values for both our 1k and 10k

tests.

I11.

Analysis

Hand Picked Features Performance
TARGET
Positive Negative sSuM
OUTPUT

10927 4041 14968
Positive 36.42% 13.47% 73.00%
27.00%

3518 11514 15032
Negative 1.73% 38.38% 76.60%
23.40%

T 14445 15555 22441 / 30000

75.65% 74.02% 74.80%
24.35% 25.98% 25.20%

Figure 3a: Logistic Regression Confusion matrix for Hand Picked Features

Embeddings Feature Performance
TARGET
Positive Negative SUM
OUTPUT

10955 4013 14968
FERLITE 36.52% 13.38% 73.19%
26.81%

3063 11969 15032
AEmes 10.21% 39.90% 79.62%
20.38%

e 14018 15982 22924/ 30000

78.15% 74.89% 76.41%
21.85% 25.11% 23.59%

Figure 3b: Logistic Regression Confusion Matrix for Embeddings Feature

It can be seen that there was roughly a ten percent increase across all metrics compared to
the two logistic regression models from Project 1. While the model was more accurate and had
better performance the efficiency of the BERT model was much worse. It took about four hours
to finetune the BERT model compared to minutes for the logistic regression model. The
accuracy might increase if the training set is increased to allow for better fine tuning but this

would exponentially increase the training time.

IV. Conclusion

Overall, this research aimed to compare the BERT model and the logistic regression
model when tasked with sentimental analysis. As discussed in the analysis section, the BERT
model resulted in a 10% increase across all metrics compared to the results of the log reg model.
This can be attributed to the increased complexities of the BERT model that allow for a better
understanding of the context of each word compared to the logistic regression model. BERT
implements a bidirectional analysis to better understand the context of words which can lead to
better results in predictions of the sentiment of the text. Comparatively, logistic regression
models mostly treat words independently and do not take into account their context or how they
modify the sentence. In addition, BERT handles the representation of words better since it
understands the context of each word. This means that if the same word is used in different ways
or contexts then the BERT model will keep track of each meaning; unlike logistic regression
models which use a single fixed representation of each word. Factors like this can explain why
the BERT model yielded significantly better results when faced with the same Amazon Review
data set as the logistic regression model.

However, while the BERT model produced better results it is important to discuss the
tradeoffs we faced. Mainly, the training time for the BERT model, as discussed above, training
took 4 hours for the BERT model compared to the logistic regression model which took a few
minutes. It is important to note this massive difference when examining the different models. In
addition, the accuracy of the BERT model could be further increased if given a larger training set
but this would dramatically increase the training time and computational power needed. When
deciding which model to use it is important to decide which factor is the most important;
performance or efficiency. In the end, this research showed the key differences between the two
models, while BERT produces more accurate results, due in part to the innate features that help it
understand the sentiment of the text, it requires far more resources compared to the logistic
regression model.

