
Evaluating Parallel Processing Using Merge Sort

Sam Bostian, Michael Rizig, Jonathan Turner, Eli Headley, Charlie McLarty, Ernesto Perez and Daron Pracharn

Instructor - Dr. Patrick Bobbie

Kennesaw State University

Marietta, GA

sbostian@students.kennesaw.edu

1 | P a g e

Abstract—Multicore processing offers the advantage of

dividing and sharing computer resources among interconnected

processes, mitigating bottlenecks and minimizing wasted

potential caused by idle computing hardware. Given the

substantial computational demands of such problems,

parallelizing and distributing computing tasks across multiple

cores is often more cost-effective than relying on a single

powerful processor. However, one drawback of multicore

processing lies in the complexity of coordinating computer

resources. The objective of this project is to leverage

parallelization to sort data using an implementation of Merge

Sort. The approach for this project involved establishing a

multithread pool and utilizing the Single Program Multiple

Data (SPMD) model. Comparisons were made with the speedup,

efficiency, and runtimes achieved by increasing the number of

distributed cores across different array sizes against the metrics

of a single-core processor.

Keywords—Threading, Multithreading, Merge sort, Parallel

Computing

INTRODUCTION

This experiment aims to answer the question: “How

significant would the performance increase if the datasets

become exponentially larger for each increase in the number

of threads used for processing?” An attempt to answer this

question by increasing each of the data sets using arrays with

sizes of 10,000, 100,000, 200,000, and 300,000. Each array

was populated with random and distinct integers ranging

from 1 to 999,999. Subsequently, the arrays were transmitted

via a master thread to a thread pool. The thread pool then

executes a merge sort on the divided components on the array

then passes the results to the master thread to reassemble the

array. The results obtained for each scaled array size were

compiled into a table and graphed to analyze the results.

DATA ANALYSIS

From each experiment the time was collected, in

nanoseconds. The timing begins at the creation of the threads

and finishes when the data from each thread finishes merging

creating a complete sorted array. For the experiments the

improvement in performance of increasing the number of

parallel processors versus the serial one, is measured using

the speedup and efficiency metrics. The speedup, the ratio of

the program runtime in serial over the runtime in parallel:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝) =
𝑇𝑆𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛,𝑝)

 [1]

Where n is the size of the input and p is the number of

processors. A perfect speedup score is where the speedup

equals the number of processors, Speedup(n,p) = p, also

known as linear speedup. To determine how each processor

contributed to the speedup parallel efficiency is used. Parallel

efficiency is calculated using the following formula:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑛, 𝑝) =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝)

𝑝
=

𝑇𝑆𝑒𝑟𝑖𝑎𝑙(𝑛)
𝑝  ∗  𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛,𝑝)

 [1]

Parallel efficiency is given by the speedup over the number

of processors.

RESULTS

As the array size increased the benefits of parallel

processing can be seen in Table 1. When the array is only

10,000 the time it takes to process the array is approximately

half from one to two and from two to four processers. When

eight and sixteen processors are used on an array of 10,000

elements the decrease in time to process the arrays is

hampered by the work to divide the array. The runtime

decreases between about three quarters when the number of

processors is increased between two and four processors.

When the processors are increased to eight or sixteen the

runtime is only decreased by about half.

While an array of 10,000 elements might look like it does

not decrease but that is due to the fact that the 300,000

elements decrease so much compared to the 10,000 elements

array.

Table 1: Runtimes for the randomly generated arrays.

10000 100000 200000 300000
p = 1 591 48221 183908 403233
p = 2 258 14191 57020 109616
p = 4 123 4532 15974 34549
p = 8 123 2278 8335 18565

p = 16 104 1257 4668 10450

Runtime
Number

of
Threads

Array Sizes (# of elements)

Figure 1: A line graph displaying the recorded runtimes for each array

size for a given number of processors.

2 | P a g e

The speedup gained by using parallel processing is

almost equal for each processor regardless of the size of the

array. The speed up almost increase by the same factor has

the number of processors doubles. The speed up is more than

tripled from one processor to two processors and from two to

four processors. The speedup increases of a factor of two

when the number of processors increases from four to eight

and then from eight to sixteen the speedup is only gained by

a factor of 1.75.

 The graph in figure 2 shows that the speedup follows

the same shape as the theoretical big O trajectory as a merge

sort, which is O(nlog2n) [2].

Unlike the speedup the efficiency did increase the same

amount for about all the array sizes. The 10,000-element

array followed the same pattern as the larger arrays but had a

lower increase in efficiency for each increase in the number

of processors used. All the arrays had their greatest

efficiency when four threads were used to sort an array. The

efficiency for each processor begins to decrease after four

threads are used.

The changes in efficiency for each array are visualized

in figure 3. The arrays 100,000 elements and larger the slope

of the graph increases between a factor of 0.6 to 0.8 for one

to eight processors used. When the number of processors is

increased to eight and higher the efficiency is between 88%

to 95% the efficiency of the previous number of processors.

The ten thousand element array has the smallest gain in

efficiency and has the largest decrease in efficiency as the

number of processors increases after four threads. Efficiency

only increases by 15% and then 5% as the number of

processors is doubled from one to four. When the number of

processors is doubled again to eight and sixteen the efficiency

decreases by about 50% for each increase.

CONCLUSION

The primary goal of this research paper was to simulate

parallel processing. Using SPMD task parallelism method of

implementation effectively addressed the issues of multi-

threading including thread synchronization and load

balancing of the data among the concurrently running threads

[1].

For the large arrays (>100,000), it was observed that a

significant speedup occurred when the number of threads

increased. This can be explained due to the cost of overhead

minimal compared to the increased efficiency of the added

cores. The efficiency in these large test cases indicated a

speedup where the speedup is greater than anticipated for an

increased number of cores.

This research showed that there is no optimal number of

cores that will suit all cases. To allow more consistent results

in a dynamic environment of differing input sizes, a threshold

could’ve been implemented to assign the number of cores on

runtime. Overall, it was determined that spending the extra

time to implement parallel processing for a sorting algorithm

yielded significantly better results when the amount of data is

substantial.

REFERENCES

[1] P. Pacheco, “An Introduction to Parallel Computing”, Elsevier Inc.,
2011. ISBN-10: 01237426095

[2] A. Levitin, “The Design and Analysis of Algorithms”, Pearson, 2012.
ISBN-10: 0-13-231681-1

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 3.68 3.4 3.23 3.68
p = 4 11.67 10.64 11.51 11.67
p = 8 21.72 21.17 22.06 21.72

p = 16 38.59 38.36 39.4 38.59

Speedup
Number

of
Threads

Array Sizes (# of elements)

Table 2: Calculated speedup for the randomly generated arrays.

Figure 2: A line graph displaying the calculated speedup for each array

size for a given number of processors.

Table 3: Calculated efficiency for the randomly generated arrays.

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 1.15 1.7 1.61 1.84
p = 4 1.2 2.66 2.88 2.92
p = 8 0.6 2.65 2.76 2.72

p = 16 0.36 2.4 2.46 2.41

Efficiency
Number

of
Threads

Array Sizes (# of elements)

Figure 3: A line graph displaying the calculated efficiency for each

array size for a given number of processors.

