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I. Methodology 
 

The goal of sentiment analysis is to determine if a particular article, comment, review or any group of text conveys 
a positive or negative tone. One method that can be used to achieve this goal is to use logistic regression. Before a 
logistic regression model can be used the text that is to be analyzed needs to be preprocessed and converted into a 
feature vector. The steps to preprocess the text includes tokenizing the text into a bag of words; which represents the 
text as an unordered group of words. Other features also include accounting for certain punctuation, certain words, 
certain types of words or the number of words in the text. 
 

 
A. PREPROCESSING TEXT DATA 

For this project, we initially import the testing and training csv files that contain Amazon reviews 
with labels to classify them with a positive or negative sentiment. To be able to turn the text into a format 
that a logistic regression can use certain elements need to be removed and important parts of the text need 
to be converted into numerical features.  The features that were chosen to use in this project were the 
number of positive lexicons, the number of negative lexicons, if a review contains the word no, if a 
review includes an exclamation (‘!’) point, and the natural log of the total number of words in the review.  
First, all the letters were converted to lowercase. To do this properly all punctuation needed to be removed 
except for the ones that were found to be important.  The stop words were removed which are commonly 
used words that have no bearing on the sentiment of the text.  Two separate files were obtained that are 
considered to be positive and negative.  The lists were compared to the remaining words that remained 
and they were tallied in their respective features. 

 
B. FEATURE EXTRACTION 
 

B-1 : HAND PICKED EXTRACTION: Code Documentation 
  
def extract_features(dataset, training=True): 
    """ Takes in set of tokens and returns feature set 
    output X = [x1,x2,x3,x4,x5, c] 
    x1 = # of positive lexicons  
    x2 = # of negative lexicons 
    x3 = # of negations 
    x4 = count("?") 
    x5 count(keywords)  
    """ 
 
    count=0 
    for sample in dataset: 

# this function is run by multiple threads, so mutex is required. 
        lock.acquire() 
        if training: 
            out = open("dataset/training_features.csv",'a') 
        else: 
            out = open("dataset/testing_features.csv", 'a') 
        x1,x2,x3,x4,x5 = extract1(sample[0]) 
        out.write(f"{x1},{x2},{x3},{x4},{x5},{sample[1]}\n") 
        lock.release() 
        count+=1 
        if count%(len(dataset)/5)==0: 
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            print("Progress on thread ID ", threading.get_ident(), ": ", 
100*(count/len(dataset)), "%") 
    return 

 
def extract1(sample): 
    # how many tokens appear in positive lexicon dict 
    x1 = len([x for x in sample.split(" ") if poswordsdict.get(x,False)==x])     
    # how many tokens apppear in negative lexicon doct  
    x2 =len([x for x in sample.split(" ") if negwwordsdict.get(x,False)==x]) 
    # counts negations  
    x3 = 0 
    # how many '?' tokens exist in sample 
    x4 = sample.count("?") 
    # how many key positive words appear in sample 
    x5 = sample.count("love") + sample.count("amazing")  + sample.count("loved")+  + 
sample.count("great") 
    # extract pairs of 2 words to count number of negations 
    ngrams = extract_ngrams(sample,2) 
    # count number of negations 
    for n in ngrams: 
        if negwwordsdict.get(n[0],False) or n[0] == "not" or n[0] == "dont"  or n[0] 
== "don't" or n[0] == "didn't" or n[0] == "didnt"  and poswordsdict.get(n[1],False): 
            # negative negation  
            x3+=1 
    return (x1,x2,x3,x4,x5) 

 
B-2 : EMBEDDINGS BASED FEATURES: Code Documentation 
 

def extract_features(dataset,): 
    weightspre = [] 
    from sentence_transformers import SentenceTransformer 
    model_st = SentenceTransformer('distilroberta-base') 
    counter=0 
    N = len(dataset) 
    for d in dataset: 
        counter+=1 
        encoded_seq =  model_st.encode(d[0]) 
        weightspre.append((encoded_seq,d[1])) 
        if counter%5000 ==0:         
            print((counter/N)*100) 
    return weightspre 

 
  
C. LOGISTIC REGRESSION 
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Logistic regression is a single neuron that uses a linear combination from the feature vector created from the 
processed data and a group of weights. Logistic regression is commonly used because it is a simple model that uses 
the sigmoid function to classify the probability of a sample belonging to a certain class.  The sigmoid function is 
used because it binds the probability between 0 to 1.  A threshold function is used to classify the probability as one 
of the two classes available.  This type of learning is the basis for many other learning algorithms. While sigmoid is 
the activation of choice for logistical regression, it runs the risk of creating / exacerbating the vanishing/exploding 
gradient problem, as numeric instability can lead to very high or low gradients effecting our output. 
 
 
 
 
 
 

II. RESULTS 
 
 

 
Figure 1: Confusion matrix for Hand Picked Features 

 
 
 

For handpicked features, we had an average accuracy of around 74.80%. Figure 1 shows the Confusion Matrix for 
this run. We can see that the model can predict negative samples more accurately than positive samples (76.6% vs 

73.0%). 
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Figure 2: Confusion Matrix for Embeddings Feature 

 
 

For the embeddings-based features, we had an average accuracy of around 76.41%. Figure 2 shows the Confusion 
Matrix for this run. We can see that the model also predicts negative samples more accurately than positive samples 

(76.6 %vs 73.0%). 
 
 
 

 
 

III. Conclusion 
 

      Through the test results shown above a conclusion can be drawn on the effectiveness of the 
experiments attempt to analysis the sentiment of Amazon product reviews. To break it down further, we 
tested the text through a binary grouping.  This means that either the text was classified as positive or 
negative sentiment. Then we ran this analysis with the text using two implementations, Hand – Picked 
Features and Embeddings Feature. Finally, we collected the data of both implementations using a confusion 
matrix to record the data, as shown above in the results section. Firstly, when looking at the Hand – Picked 
Features Performance we can use that to get the precession and the recall of the analysis. Through the data 
in the table, we get the true positives (10927) and divide that by the sum of the true positives and the false 
positives (10927 + 4041) which yields ~ 0.73 percent. Furthermore, the recall is calculated through dividing 
the true positives (10927) by the sum of the true positives and the false negatives (10927 + 3518). This 
yields a recall of ~ 0.76 percent. This means that our analysis through the Hand-Picked Features, has 
around 73% when correctly identifying a text as either positive or negative. Then our recall shows us that 
when we select the text as positive, we had a 76% rate of being correct in that analysis.  This can be shown 
in our graphs as our total correct predictions out of all our data values is at 74% which is around both of our 
values.  
        Comparatively, our Embeddings Feature has some slightly different calculations. When looking at the 
precision results in a yield of ~ 0.73 percent. Furthermore, our recall results in a yield of ~ 0.78 percent. 
This means that both implementations have decently high succession rates but with some room for 
improvement. Overall, both implementations feature similar rates of both precision and recall; with the 
Embedding having a higher recall rate and the handpicked having a slightly higher persecion rate. Meaning, 
Handpicked might have a slightly higher chance of correctly placing a text into either positive or negative, 
but Embedding will have a lower chance of incorrectly picking a text as positive. Metrics like these 
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Positive – Negative tables are used to test the effectiveness of your models and to better understand the 
downfalls of your model. 


