

Logistic Regression Sentiment Analysis

CS 4742
Natural Language Processing

Fall 2024

Instructor – Dr. Michail Alexiou

Michael Rizig, Sam Bostian, Colton Baldwin

P a g e | 2

I. Methodology

The goal of sentiment analysis is to determine if a particular article, comment, review or any group of text conveys
a positive or negative tone. One method that can be used to achieve this goal is to use logistic regression. Before a
logistic regression model can be used the text that is to be analyzed needs to be preprocessed and converted into a
feature vector. The steps to preprocess the text includes tokenizing the text into a bag of words; which represents the
text as an unordered group of words. Other features also include accounting for certain punctuation, certain words,
certain types of words or the number of words in the text.

A. PREPROCESSING TEXT DATA

For this project, we initially import the testing and training csv files that contain Amazon reviews
with labels to classify them with a positive or negative sentiment. To be able to turn the text into a format
that a logistic regression can use certain elements need to be removed and important parts of the text need
to be converted into numerical features. The features that were chosen to use in this project were the
number of positive lexicons, the number of negative lexicons, if a review contains the word no, if a
review includes an exclamation (‘!’) point, and the natural log of the total number of words in the review.
First, all the letters were converted to lowercase. To do this properly all punctuation needed to be removed
except for the ones that were found to be important. The stop words were removed which are commonly
used words that have no bearing on the sentiment of the text. Two separate files were obtained that are
considered to be positive and negative. The lists were compared to the remaining words that remained
and they were tallied in their respective features.

B. FEATURE EXTRACTION

B-1 : HAND PICKED EXTRACTION: Code Documentation

def extract_features(dataset, training=True):
 """ Takes in set of tokens and returns feature set
 output X = [x1,x2,x3,x4,x5, c]
 x1 = # of positive lexicons
 x2 = # of negative lexicons
 x3 = # of negations
 x4 = count("?")
 x5 count(keywords)
 """

 count=0
 for sample in dataset:

this function is run by multiple threads, so mutex is required.
 lock.acquire()
 if training:
 out = open("dataset/training_features.csv",'a')
 else:
 out = open("dataset/testing_features.csv", 'a')
 x1,x2,x3,x4,x5 = extract1(sample[0])
 out.write(f"{x1},{x2},{x3},{x4},{x5},{sample[1]}\n")
 lock.release()
 count+=1
 if count%(len(dataset)/5)==0:

P a g e | 3

 print("Progress on thread ID ", threading.get_ident(), ": ",
100*(count/len(dataset)), "%")
 return

def extract1(sample):
 # how many tokens appear in positive lexicon dict
 x1 = len([x for x in sample.split(" ") if poswordsdict.get(x,False)==x])
 # how many tokens apppear in negative lexicon doct
 x2 =len([x for x in sample.split(" ") if negwwordsdict.get(x,False)==x])
 # counts negations
 x3 = 0
 # how many '?' tokens exist in sample
 x4 = sample.count("?")
 # how many key positive words appear in sample
 x5 = sample.count("love") + sample.count("amazing") + sample.count("loved")+ +
sample.count("great")
 # extract pairs of 2 words to count number of negations
 ngrams = extract_ngrams(sample,2)
 # count number of negations
 for n in ngrams:
 if negwwordsdict.get(n[0],False) or n[0] == "not" or n[0] == "dont" or n[0]
== "don't" or n[0] == "didn't" or n[0] == "didnt" and poswordsdict.get(n[1],False):
 # negative negation
 x3+=1
 return (x1,x2,x3,x4,x5)

B-2 : EMBEDDINGS BASED FEATURES: Code Documentation

def extract_features(dataset,):
 weightspre = []
 from sentence_transformers import SentenceTransformer
 model_st = SentenceTransformer('distilroberta-base')
 counter=0
 N = len(dataset)
 for d in dataset:
 counter+=1
 encoded_seq = model_st.encode(d[0])
 weightspre.append((encoded_seq,d[1]))
 if counter%5000 ==0:
 print((counter/N)*100)
 return weightspre

C. LOGISTIC REGRESSION

P a g e | 4

Logistic regression is a single neuron that uses a linear combination from the feature vector created from the
processed data and a group of weights. Logistic regression is commonly used because it is a simple model that uses
the sigmoid function to classify the probability of a sample belonging to a certain class. The sigmoid function is
used because it binds the probability between 0 to 1. A threshold function is used to classify the probability as one
of the two classes available. This type of learning is the basis for many other learning algorithms. While sigmoid is
the activation of choice for logistical regression, it runs the risk of creating / exacerbating the vanishing/exploding
gradient problem, as numeric instability can lead to very high or low gradients effecting our output.

II. RESULTS

Figure 1: Confusion matrix for Hand Picked Features

For handpicked features, we had an average accuracy of around 74.80%. Figure 1 shows the Confusion Matrix for
this run. We can see that the model can predict negative samples more accurately than positive samples (76.6% vs

73.0%).

P a g e | 5

Figure 2: Confusion Matrix for Embeddings Feature

For the embeddings-based features, we had an average accuracy of around 76.41%. Figure 2 shows the Confusion
Matrix for this run. We can see that the model also predicts negative samples more accurately than positive samples

(76.6 %vs 73.0%).

III. Conclusion

 Through the test results shown above a conclusion can be drawn on the effectiveness of the
experiments attempt to analysis the sentiment of Amazon product reviews. To break it down further, we
tested the text through a binary grouping. This means that either the text was classified as positive or
negative sentiment. Then we ran this analysis with the text using two implementations, Hand – Picked
Features and Embeddings Feature. Finally, we collected the data of both implementations using a confusion
matrix to record the data, as shown above in the results section. Firstly, when looking at the Hand – Picked
Features Performance we can use that to get the precession and the recall of the analysis. Through the data
in the table, we get the true positives (10927) and divide that by the sum of the true positives and the false
positives (10927 + 4041) which yields ~ 0.73 percent. Furthermore, the recall is calculated through dividing
the true positives (10927) by the sum of the true positives and the false negatives (10927 + 3518). This
yields a recall of ~ 0.76 percent. This means that our analysis through the Hand-Picked Features, has
around 73% when correctly identifying a text as either positive or negative. Then our recall shows us that
when we select the text as positive, we had a 76% rate of being correct in that analysis. This can be shown
in our graphs as our total correct predictions out of all our data values is at 74% which is around both of our
values.
 Comparatively, our Embeddings Feature has some slightly different calculations. When looking at the
precision results in a yield of ~ 0.73 percent. Furthermore, our recall results in a yield of ~ 0.78 percent.
This means that both implementations have decently high succession rates but with some room for
improvement. Overall, both implementations feature similar rates of both precision and recall; with the
Embedding having a higher recall rate and the handpicked having a slightly higher persecion rate. Meaning,
Handpicked might have a slightly higher chance of correctly placing a text into either positive or negative,
but Embedding will have a lower chance of incorrectly picking a text as positive. Metrics like these

P a g e | 6

Positive – Negative tables are used to test the effectiveness of your models and to better understand the
downfalls of your model.

